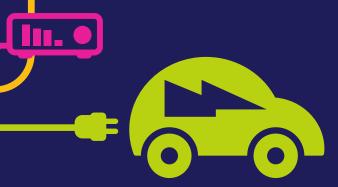
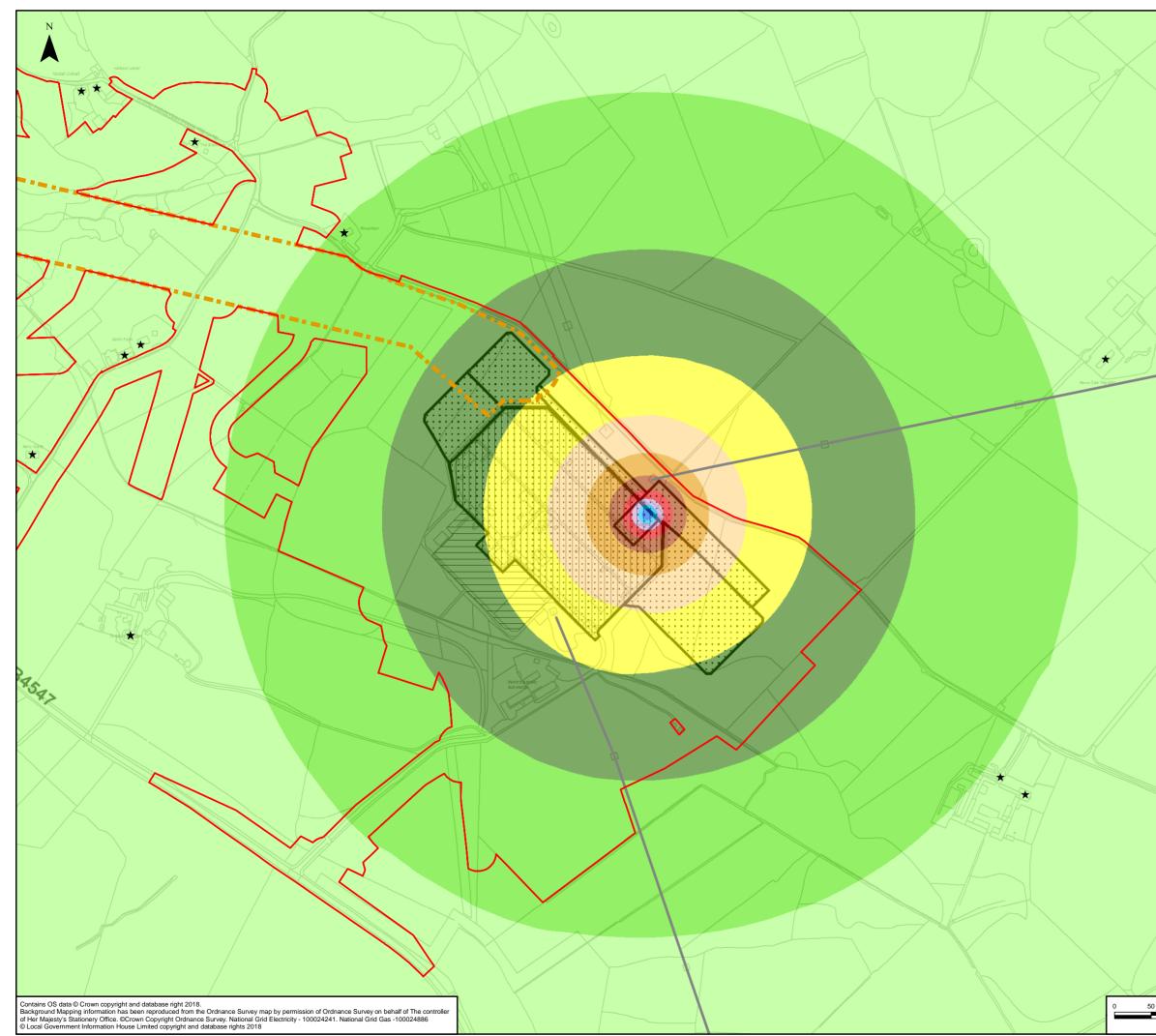

5.16.1.8


Pentir Substation Chapter 16 – Figure 8

National Grid (North Wales Connection Project)

Regulation 5(2)(a) including (l) and (m) of the Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009


national**grid**

A 8 8 8 8 8 9

September 2018

Document Path: F:\Proposal3512\North Wales Connection - NG\GIS\02 Maps\Operational Noise & Vibration_ES Figs_DCO 2018\OPNOISE_16-8_PENTIR_SUB_Plan_Series_20180726.mxd

NWC ROUTE LEGEND

		LEGEND								
		ORDE		6						
	Ċ.	ABOV (LOD)		ND LIMIT	OF	DEV	IATIC	N		
	¢3	BELO (LOD)		IND LIMI	ΓOF	DEV	IATIO	NC		
		SECT	ION CUT	LINES						
	★	RECE	PTORS							
-	—	= EXIST	ING 400	KV OVER	HEA	D LII	١E			
			POSED S	UBSTATI	ON E	XTE	NSIC	DN		
			TING 132 TATION	KV OUTD	OOR	2				
	Ш			IONAL G		400K	V			
	SPE	CIFIC N	OISE LE	VEL, LAe	q,T d	В				
		BELO	W 20							
		20 TO	25							
		25 TO	30							
		30 TO	35							
		35 TO								
		40 TO								
		45 TO								
		45 TO								
		55 TO								
		60 TO	65							
		65+								
635 000										
	A	26/07/2018	ENVIRON	MENTAL ST	ΔΤΕΜ	NT	JB	JB	RM	
	Rev	Date	LINNIKON	Description			GIS	Chk	Арр	
	H		124		0.00	• •	5.5	2. IX	. 46	
	national grid									
K		Scheme: NORTH WALES CONNECTION PROJECT								
K/		NOR		CONNEC	TION	PRO	JECT			
K/		ner: NOR		5.16.1.8	TION	PRO	JECT			
K	Docum	NOR nent Number: nent Title:	F SUBSTATI		.8 SHUN					
200	Docum	nent Number: nent Title: PENTIR r: Date:	F SUBSTATI	5.16.1.8 IGURE 16 ON (NEW SECTION I ker: Date:	.8 SHUN		ACT(OR) Date:	/2018	